

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Distributed Processing Tools

Course

Field of study

Computing

Area of study (specialization)

Distributed Systems

Level of study

Second-cycle studies

Form of study

full-time

Year/Semester

1/1

Profile of study

general academic

Course offered in

Polish

Requirements

compulsory

 Number of hours

Lecture

30

Tutorials

Laboratory classes

30

Projects/seminars

Other (e.g. online)

Number of credit points

Lecturers

Responsible for the course/lecturer:

Dariusz Wawrzyniak, Ph.D.

Responsible for the course/lecturer:

 Prerequisites

Learning outcomes of the first cycle studies defined in the resolution of the PUT Academic Senate

(verified in the admission process to the second-cycle studies, available at the website of the faculty

www.cat.put.poznan.pl or www.fc.put.poznan.pl), especially programming skills in commonly used

programming languages (e.g. C/C++, Java), knowledge of operating systems and concurrent processing,

basic experience in network programming and distributed computing.

Course objective

1. Provide students with fundamental knowledge of tools for building distributed systems, related

services and mechanisms, as well as techniques and paradigms of distributed programming.

2. Develop the ability to choose an appropriate approach to solving distributed processing problems and

constructing distributed systems.

Course-related learning outcomes

Knowledge

1. Has a structured and theoretically founded general knowledge related to the paradigms of distributed

system programming.

2

2. Has advanced detailed knowledge regarding environments and tools applied in building distributed

application.

3. Knows development trends in environments and tools for distributed system construction.

4. Has advanced and detailed knowledge of the processes occurring in the life cycle of distributed

systems.

5. Knows advanced methods, techniques and tools used to solve complex engineering tasks in a selected

area of distributed system construction.

Skills

1. Is able to plan and carry out experiments, including computer measurements and simulations,

interpret the obtained results and draw conclusions and formulate and verify hypotheses related to

complex engineering problems of distributed processing tools.

2. Can use analytical, simulation and experimental methods to formulate and solve engineering

problems of distributed processing tools.

3. Is able to assess the suitability and the possibility of using new achievements (methods and tools) and

new IT products related to distributed processing tools.

4. Can carry out a critical analysis of existing technical solutions related to distributed processing tools

and propose their improvements (streamlines).

5. Is able to assess the usefulness of distributed processing methods and tools for solving an engineering

task, consisting in the construction or evaluation of an IT system or its components, including the

limitations of these methods and tools.

6. Is able - in accordance with a given specification, taking into account non-technical aspects - to design

a complex device, IT system or process and implement this project - at least in part - using appropriate

distributed processing methods, techniques and tools, including adapting to this purpose existing tools

or developing new ones.

Social competences

1. Understands that in the field of IT the knowledge and skills related to distributed processing tools

quickly become obsolete.

2. Understands the importance of using the latest knowledge in the field of distributed processing in

solving research and practical problems.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: written exam with about four open-ended questions or problems with about 100 points to

score and 50 points to pass.

Classes: practical assignments focused on the application of distributed processing tools.

Extra points for an outstanding activity or elaboration of additional aspects of a problem/tool.

Programme content

The lecture covers the following topics:

3

- basic terms and concepts, including the distinction between network system, distributed system, and

middleware;

- the classification of interprocess communication mechanisms;

- remote procedure call, including the issue of RPC protocol and failure semantics, the question of

idempotent procedure and stateless RPC services;

- object-oriented approach to distributed system construction, covering object classification in the

context of distributed processing, interface definition and its particular function as a parameter type,

inheritance;

- concurrency in executing remote services, resource sharing and synchronisation, the control of

threads;

- message-oriented middleware: the concept, queuing and publish-subscribe paradigms, broker-based

and non-broker examples;

- tuple spaces: the concept of Linda, associative addressing, the specification of JavaSpeces with

examples;

- Ada-95: principles of programming (data types, programming constructs, packages, object-

orientedness), concurrency (tasks, rendezvous, protected objects), distributed processing according to

the specification in Annex E (units categories, system description language).

Laboratory classes are split into 15 units conducted at workstation running under Linux. Students are

assigned tasks to be performed individually or occasionally in small groups. The topics include:

- OS level concurrency: POSIX threads and their synchronisation, the concept of a monitor;

- a project of distributed monitor based on ZeroMQ;

- SunRPC: verification of failure semantics based on a remote counter, complex network service (with

concurrent handling and callback);

- JavaRMI or Internet Communications Engine as an example of the object-oriented approach, the

comparison of the remote counter in procedural and object-oriented approach, object-based remote

buffer;

- MOM systems (remote buffer generalisation), the comparison of queuing and publish-subscribe

communication mode;

- JavaSpaces: an example of associative addressing in interprocess communication;

- principles of Ada programming based on an implementation of a simple algorithm (e.g. bubble sort,

selection sort);

4

- concurrency in Ada: task creation, synchronisation through rendezvous, protected objects,

implementation of a semaphore and bounded buffer as an example;

- distributed programming based on Annex E with examples involving units categorised as RCI, RT, SP.

Teaching methods

1. Lectures: presentation of slides (multimedia showcase), discussion of problems, solving tasks on

blackboard.

2. Classes: solving tasks, practical exercises, discussion, conducted in a computer laboratory under the

control of Unix-like operating system.

Bibliography

Basic

1. G. Coulouris, J. Dollimore, T. Kindberg, Systemy rozproszone. Podstawy i projektowanie, WNT, W-wa,

1999.

2. A.S. Tanenbaum, M. van Steen, Systemy rozproszone. Zasady i paradygmaty, WNT, W-wa, 2006.

Additional

1. M. Gabassi, B. Dupouy, Przetwarzanie rozproszone w systemie UNIX, Lupus, W-wa, 1995.

2. E. Freeman, S. Hupfer, K. Arnold, JavaSpaces Principles, Patterns, and Practice, Addison-Wesley,

1999.

3. Z. Huzar, Z. Fryźlewicz, I. Dubielewicz, i in., Ada 95, Helion, Gliwice, 2001.

4. J. Barnes, Ada 2012, Cambridge University Press, 2014.

Breakdown of average student's workload

 Hours ECTS

Total workload 125 5,0

Classes requiring direct contact with the teacher 60 2,5

Student's own work (literature studies, preparation for

laboratory classes/tutorials, preparation for tests/exam, project

preparation)
 1

65 2,5

1
 delete or add other activities as appropriate

